Maternal Protein Restriction Affects Postnatal Growth and the Expression of Key Proteins Involved in Lifespan Regulation in Mice
نویسندگان
چکیده
We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation (postnatal low protein: PLP animals) increased lifespan. We aim to explore the mechanistic basis by which these differences arise. Here we investigated effects of maternal diet on organ growth, metabolic parameters and the expression of insulin/IGF1 signalling proteins and Sirt1 in muscle of male mice at weaning. PLP mice which experienced protein restriction during lactation had lower fasting glucose (P = 0.038) and insulin levels (P = 0.046) suggesting improved insulin sensitivity. PLP mice had higher relative weights (adjusted by body weight) of brain (P = 0.0002) and thymus (P = 0.031) compared to controls suggesting that enhanced functional capacity of these two tissues is beneficial to longevity. They also had increased expression of insulin receptor substrate 1 (P = 0.021) and protein kinase C zeta (P = 0.046). Recuperated animals expressed decreased levels of many insulin signalling proteins including PI3 kinase subunits p85alpha (P = 0.018), p110beta (P = 0.048) and protein kinase C zeta (P = 0.006) which may predispose these animals to insulin resistance. Sirt1 protein expression was reduced in recuperated offspring. These observations suggest that maternal protein restriction can affect major metabolic pathways implicated in regulation of lifespan at a young age which may explain the impact of maternal diet on longevity.
منابع مشابه
P-65: Maternal Effect Genes in Mammalian Reproduction
Background: Regulation of gene expression in mammalian embryos is not completely known. Pre-implantation embryos need maternal RNA and proteins synthesized during oogenesis, to regulate development before mater-embryo transition, as the grown oocyte and the 1-cell zygote are transcriptionally silent. There are some oocyte-specific genes called maternal effect genes which may account for this ea...
متن کاملEffects of dietary protein restriction on nephron number in the mouse.
In rats, maternal protein restriction reduces nephron endowment and often leads to adult hypertension. Sex differences in these responses have been identified. The molecular and genetic bases of these phenomena can best be identified in a mouse model, but effects of maternal protein restriction on kidney development have not been examined in mice. Therefore, we determined how combined prenatal ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009